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Abstract

The mixture of multivariate Bernoulli distributions
(MMB) is a statistical model for high-dimensional
binary data in widespread use. Recently, the MMB
has been used to model the sequence of packet re-
ceptions and losses of wireless links in sensor net-
works. Given an MMB trained on long data traces
recorded from links of a deployed network, one can
then use samples from the MMB to test different
routing algorithms for as long as desired. How-
ever, learning an accurate model for a new link re-
quires collecting from it long traces over periods of
hours, a costly process in practice (e.g. limited bat-
tery life). We propose an algorithm that can adapt
a preexisting MMB trained with extensive data to a
new link from which very limited data is available.
Our approach constrains the new MMB'’s parame-
ters through a nonlinear transformation of the ex-
isting MMB'’s parameters. The transformation has
a small number of parameters that are estimated us-
ing a generalized EM algorithm with an inner loop
of BFGS iterations. We demonstrate the efficacy
of the approach using the MNIST dataset of hand-
written digits, and wireless link data from a sen-
sor network. We show we can learn accurate mod-
els from data traces of about 1 minute, about 10
times shorter than needed if training an MMB from
scratch.

Introduction

In order to behave optimally, the distributed algorithms-ru

simple statistical models such as the Gilbert-Elliott mode
[Gilbert, 1960. However, the former are able to deal only
with simple geometries and are unsuitable to real deploy-
ments; and the latter may be able to capture simple statis-
tics such as the packet reception rate (PRR, the moving av-
erage of the sequence) or simple bursts, but are unable to
capture the complex correlations seen in real traces ¢parti
larly with low-quality links)[Pawlikowskiet al., 2004. More
recently, more sophisticated machine learning methods us-
ing larger numbers of parameters estimated on recorded data
have shown remarkable improvements. We consider in par-
ticular the Multi-level Markov Model (M&M) recently pro-
posed by Kamthet al. [2009. This models the binary se-
quence by considering it as a sequence of windowslof
consecutive bits. The model consists of (1) a hidden Markov
model (HMM) that accounts for the long-term changes in
the sequence, mostly caused by drastic changes in the PRR
(e.g. caused by interference by an object moving nearby);
and (2) as output distribution of each HMM state, a mix-
ture of multivariate Bernoulli distributions (MMB) that ac
counts for short-term changes intrinsic to the link (deetd

on its location). Kamthest al. trained this model on long
data traces (over hours or days) and showed using various
statistics (PRR, run length distribution, Jensen-Shardion
vergence) the ability of the M&M model to learn complex
distributions for links of very different characteristics

However, one drawback of the M&M and similar data-
driven models with many parameters is the need for suffi-
ciently large training sets to achieve reliable estimalidss
means that for each link of a sensor network that we want
to model, the network developer must first record data for
enough time (hours or days). This prevents quick setup of a

ning on a sensor network—for example, to find the routen€W link and is costly in resources (e.qg. battery life), joart

for a packet or to decide whether to transmit now or later—arly for sensors in hard-to-reach locations (such as ¢éma
require knowledge of the wireless link quality between anysensing networks in Greenland). In these situations, itasiak
two nodes. In order to test such algorithms before they rufense to use an existing model (which we call reference) that
in an actual network, network researchers use simulatats thhas been trained with extensive data and adapt it to the new
generate binary sequences (data traces) where 1 and 0 c§ftuation (the target distribution) given a far smalleredaice
respond to packet reception or loss, respectively. Thay thethan would be necessary to train a new model from scratch.
generate sequences for as long as desired and feed themgis is the adaptation setting that we pursue in this paper.
the algorithms as input. Ideally, the distribution of theéada  In the original M&M model[Kamtheet al., 2009, one first
traces should match that of the real link targeted. Tradhtio clusters the training set into separate subsets roughhg-cor
ally, wireless links have been modeled with hand-crafted apsponding to different PRRs, and each cluster corresponding
proaches based on the physics of wave propagation; or witto one state of the HMM. Then a different MMB is learned



separately for each state. Thus, we focus here on adapting nof each component given a data vector. The M step estimates
the entire M&M model but on adapting a single MMB. We the parameters of each component: its mixing proportion is
assume that the data corresponding to this particular MMBproportional to the total posterior probability of the camap
has been selected ahead of time. We believe ours is the firaent, and its prototype is the average of the whole data wrt
approach to adapting a mixture of multivariate Bernoullis.  the posterior probabilities. The EM algorithm needs ititia
In the next sections, we review related work, define thevalues for the parameters and can converge to local optima.
MMB and our adaptation strategy, derive a generalized EM In the context of adaptation, we will calitraining the pro-
algorithm, and evaluate it with MNIST and wireless data.  cess of estimating an MMB using this EM algorithm given the
adaptation data, and initializing the parameters to thbtseo

multitask learning has considered the problem of learninghat overtrain and generalize poorly to future data. Fomexa
models such as classifiers in the presence of different dd?le, in applications like those we consider (binary images o
mains[Thrun and Pratt, 1998 In our adaptation setting, Windows), the space dimensionalify is large (hundreds), so
we do not know at training time the target distribution we !f little adaptation dat_a is available, some of the dimensio
need to model. Our work is most closely related to adaptaln the data may consist mostly (or only) of Os or 1s. The cor-
tion methods in speech processigoodland, 2001, where ~ respodingp,,.,, value will clamp to (close to) 0 or 1 and will
given a Gaussian-mixture-based HMM trained for a referthen rarely generate a 1 or a 0, respectively, during sagyplin
ence speaker we want to adapt it to a new speaker given $8 the simulated traces will not be representative of tha.dat
little new speech as possible. Maximum-a-posteriori meth-

ods apply Bayes’ rule using as prior the trained md@su- 3 Adapting the MMB

vain and Lee, 1992r a hierarchical priofShinoda and Lee,
1997 and converge to the true maximum-likelihood estimate/Vé NOW assume we havg an MMB model_(tf@erence

with infinite data, but are generally not competitive wittig ~ M°del) that has been trained on an extensive dataset (say,
adaptation data because only a few parameters are updat&%ﬁ?m a given wireless link in a network), that is, we have
Thus, most work is based on tying together groups of param= € values of its parameters (m'x'“g proportions and proto-
eters (means, covariances) and using linear transformsatio YPES)- We are given aadaptation dataset, sampled from

of the parameters or featurdiseggetter and Woodland, 1995; 2N unknowntarget distribution, containing a small number
Digalakiset al., 1995; Lee and Rose, 1998; Qin and Carreira-\ Of binary W-dimensional vectorgx., },,—,, and Wejv‘]"’am
Perphan, 2009. This does not converge to the maximum- (© &m a new MMB model, with parametefis,.., .. }

. . - . . m:1, -
likelihood estimate but updates all parameters and signififo" the target distribution. Our algorithm is based on thesid
cantly improves the model with little data. As we show later,

of tying the MMB parameters together through a transforma-

linear transformations are not suitable with MMBs becausdiO" Of the reference parameters. The transformatiorf el

(unlike the means of a Gaussian) the prototypes are corf€"Y few parameters, so they can be learned from the small

strained to be if0, 1] adaptation dataset, but their effect is propagated to all th
Other work considers a space where each point represe

MMB parameters through the transformation. Specifically,
a model, and constrains the target model to be in a manifol

e obtain each new//-dimensional prototyp@,, as anon-
or cluster set spanned by existing trained mofi¢ldnet al.,

Inear transformation f(p.,, 8,,) of the reference prototype
2000: Gales, 2040 However, this requires sufficiently many Pm: independently for each component, using a number of
trained models, which may not be available in practice.

parameter®,,, much less thaml’. The transformation is non-
linear because the prototypes must b&ir]. With a linear

; S rar s ictrilg it transformation with shared parameters, the total amount of
2 Mlxtgre of multlvarlate Bernou_lll dlstrlbutlorls ~ change inp,, is limited, becaﬂse reference valyes, close
Beyond its use in the M&M model, mixtures of multivari- to either 0 or 1 would immediately reach 0 or 1 (saturate)
ate Bernoulli distributions (MMB) are Wldely used to model and prevent the remaining, less extreme values from adapt-
high-dimensional binary data in terms of a few latent classe ing. This is a major difference with existing adaptation kor
from bacterial taxonomy to binary imagEsveritt and Hand,  on Gaussian mixtures where the Gaussian means are uncon-
1981; Carreira-Perfian and Renals, 2000Given a data vec-  strained and linear transformations suffice. In this paper,

torx € {0,1}"" with W binary variables, its density is apply a sigmoid transformation with parametes, b,, € R
M w elementwise to each entry j),,:
p(x) = Z Tmp(x|m)  p(x|m) = H P (1 *pmw)lizw 1
m=1 w=1 5mw = U(pmw? Am s bm) = 17 s w.

= 1 _|_ 6_(ampmw+bm) » W
where there aré/ components and the parameters are the

mixing proportionsr,, (which are positive and sum to one) This allows large changes to all,,, even if some are close to
and the prototypep,, € [0,1]". Thus, variables within a the boundaries. (In the nongeneric case wherg,all values
component are independent, but not across components. Witre identical within one component, there is an infinite num-
enough components, an MMB can represent complex highber of (a,,, b,,) values that can map it to a given output, and
dimensional distributions. our algorithm will find one of those.) As for the mixing pro-

Given a training set, an MMB is usually trained with an portions, since there is only one per component, we consider
EM algorithm. The E step computes the posterior probabilitythem as free during adaptation (subject to adding to 1).



Thus, our algorithm needs to maximize the likelihood of when equated to zero cannot solved in closed form for
the adaptation data over a total 8%/ — 1 free parameters {a7 1 b7+1}, so we iterate ovefa,,, b,, } using BFGS.
(mixing proportionsry, ..., 7y —1 and sigmoid parameters
ai,b1,...,apr,byr), which with our high-dimensional data . . . .
is far less thar{W + 1)M — 1 parameters (proportions and COomputational complexity Our algorithm consists of an
prototypes) for the unconstrained MMB. outer loop of GEM iterations, and an inner loop of BFGS it-

Like the EM algorithm for MMBs, our GEM algorithm can  €rations for the M step. Our experiments show how to set
converge to local optima. Since the point of adaptationas th the €xit tolerance and maximum number of inner-loop iter-
the reference model should be relatively close to the targeftions- Computing the BFGS search directior0ig)/°) (a
one, the initial values fof#,,, am, b, } should be such that Matrix-vector product of orders), which is negligible wrt
the MMB they represent is as close as possible to that of th€0mPuting the E step and gradient@f both of which cost
reference model. This is achieved by settiig = ., and (MNW). Thus the algorithm runtime i9(N M W) times
am = 5.47, b, = —2.79; the latter correspond to the sigmoid the total number of inner-loop iterations.
that is closest to the identity transformation. We do déscri
an alternative initialization strategy in section 5. 4 Experiments

A generalized EM algorithm for adaptation Our objec- 4.1 MNIST handwritten digits

tive function is the log-likelihood of the adaptation dateepy =~ The MNIST dataset, commonly used in machine learning,

the constrained MMB model with)M — 1 free parameters: ~ contains grayscale images 28 x 28 pixels (V' = 784 di-

I (= b M _yN M~ ) b mensions) of handwritten digits from many writers. We iflus
({Fms s b Yiner) = 325021108 20—y FnP (%3 @my bin)  rate our adaptation algorithm by having a reference model

where p(x,,; am, by,) is @ multivariate Bernoulli with pro-  trained on a large subset of MNIST, and then adapting to a

totype . = 0(Pm;am,bn). We provide a generalized small subset where the pixel intensities have been inverted

expectation-maximization (EM) to maximize[McLachlan  (see fig. 1). This represents a situation where the target dis

and Krishnan, 2008 Unlike in the EM algorithm to train tribution is very different from the reference distributidut

an MMB, the use of a nonlinear transformation makes themany of its characteristics (e.g. digit class, slant, thess)

M step now not solvable in closed form f¢t.,,,b,,,}. In-  do not change. These characteristics have been learnt by the

stead, we need to solve it iteratively; we have found the BFGSeference model using a large training set, and the goal of

algorithm (a quasi-Newton algorithm with superlinear con-the adaptation is to preserve those but change the intensity

vergence; Nocedal and Wrigf2004) effective. Since this match the new, inverted one.

increases but (if we exit BFGS early) need not maximize \We used data from the digits ‘1", ‘2’ and ‘3’ only. We

the likelihood within the M step, our EM algorithm is gen- randomly split thel0 000 digits per class into a training set

eralized, and the theorems for convergence of GEM apply3000), a target datase6 (000) and a test dataset (00). Al-

[McLachlan and Krishnan, 20p8The E step is analogous to though MNIST provides the digit label, none of our experi-

that of the EM algorithm for MMBs. In the equations below, ments use it, so all models are learnt in a purely unsupetvise

notep;,,, = o (Pmw; ary, by,,)- way. We converted the grayscales frfimi] to binary using a
E step This computesr”,, = p(m|x,;77,,al bl ), the threshold of0.5, and inverted the images from the target and
posterior probability of component given data point test sets. Our reference model (fig. 2) held= 3 compo-
x,, under the current iteration’s’) parameters: nents (for a total of 354 parameters) and was learned on the
} 7T HW (T Er (L — By ) e training set with the EM algorithm. For adaptatiéghparam-

mn = . - . eters) and retraining2@54 parameters), we used randomly
Y mr1 Tt Hlaper (P )7 (1= Pli) ™% selected subsets of siZé from the target set, wher® var-
M step This results from increasing or maximizir@, the  ied from3 to 18000 (the whole target set); note that subsets
expected (wrt ther”, ) complete-data log-likelihood, did not necessarily contain the same number of ‘1’, ‘2’ or ‘3’

mn

r

OVer Ty, Ay bin: The experiments were repeated over 50 subsets each to obtain
~ M e o oM errorbars. As initialization, we used the algorithm desedi
QUTms @ms b }in—1; {7 @y U Yin1) = in section 5 for both EM retraining and GEM adaptation. We

Yo Zi\le 17 2108 (205 72 )D(Xn| 205 2,4 b)) stopped iterating when the relative log-likelihood changs

less thanl0~8.

Fig. 2 shows the learned parameters for a particular sub-
set of N = 100 adaptation vectors. The parameters resulting
from adaptation resemble very much the ones resulting from

where we calll < z,, < M the (unknown) index of the
mixture component that generated data pgintWe ob-
tain a closed-form solution for the mixing proportions:

~r+1 _ 1 N T - : ; R R
T " = N 2ane1 Tmn retraining with extensive data, which in turn resemble #fe r
but the expression for the gradient@fwrt {a,,, b, } erence ones but inverted (also shown by the inverted signoid

le) N W B in fig. 3). The prototypes look like smooth, average shapes
T = D 1 Tinn 2we1 Pmw(Tnw — Pmw) representative of the entire populations of ‘1’, ‘2’ and.‘3’
da
9 m Even though we adapt onB/free parameters, all 354 pa-
9Q — ZNﬂ " ZWﬂ (Znw — Prnew) rameters (prototypes and proportions) undergo large @sang

by, However, retraining withV = 100 vectors gives poor results,
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Figure 1: MNIST: sample training vectoss, in the reference (top row) and target (bottom row) datasets.

Reference model— —— Adapted model— Retrained model— Retrained, all data—
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Figure 2: MNIST: MMB parameters for the reference model,paation (with N = 100 adaptation points), retraining (with
N = 100) and retraining (withV = 18 000).
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Figure 3: MNIST: estimated sigmoids for two of the com-
ponents. The vertical and horizontal lines indicate pairs
(Pmaw, Pmw) (noOt all W pairs are shown, to avoid clutter).
Note how both essentially invert the input.

Pon test set

with each component learning slant and other traits that ar
idiosyncratic to the particular adaptation set used.

Fig. 4(top) shows the log-likelihood on the test set as a
function of N. The adaptation algorithm achieves results
close to retraining with all data (“optimal” line) for veryrall
N and reliably so (note the tight errorbars). Asincreases,
the adaptation performance stagnates without reaching th&€
optimal baseline, a necessary consequence of learning ver® 0-2f

ation accurac

few free parameters. Retraining neells > 100 vectors S o1} —+=- Adaptation |
to equal adaptation and performs poorly and unreliably with o ~— Retraining
small N. The classification accuracy (fig. 4, bottom), where 3 10 25 100 250 1000 5000 18000
we assigned a test imageo the cluster with largest posterior Number of adaptation data poimé

probabilityp(m|x) under the MMB, shows similar results. Figure 4: MNIST: results of the retraining (red) and adap-

We also determined the number of inner-loop iterationsagion (blue) algorithms, the reference model (dashedkblac
(which correlates well with the runtime) that leads to fate anq retraining with all data (solid black) on the log-likeod
runtime. We ran the inner loop until either a relative log- (above) and classification accuracy (below) on test sets, as

likelihood change of or I iterations were achieved, for @ fnction of the adaptation set si2é. Errorbars over 50 ran-
fixed model initialized from the same point (we checked all yom subsets of adaptation points.

repeats converged to the same optimum). Table 1 shows that



Fixed I Fixede MMB for state 1 of the HMM

€ I outer inner € I outer inner \ Percentage of target data
10~ 100 267 267 10°°% 1 267 267 Emma s = 100
1072 100 281 284 1078 2 27 53 ko, e s
104 100 343 365 10° 3 34 96 L B
10~* 100 157 171 10°% 4 30 117 Q /
107> 100 47 62 100® 5 26 126 52
10-¢ 100 3 20 1078 10 4 23 ) T
10-7 100 3 20 100 25 3 20 .4 ,
0% 100 3 20 107% 100 3 20 = e
. . . é d -~ Retraining (Ref)
Table 1: Total number of outer and inner loop iterations for 75 —<Retraining (Ran)
the GEM algorithm as a function of the convergence tolerance 9 -+ Adaptation (Ref)
e and max. number of iterationsallowed in the inner loop. e )
8 21 42 63 84 211 844
Number of adaptation vectorg
solving the inner, BFGS iteration accurately is fastest, \aa
usede = 108 andl = 25 for all our experiments. MMB for state 2 of the HMM
4.2 Wireless link data _pX 10 2.5Pel’CF;‘nt7<’:.15g?00f targzit data 100
We collected a comprehensive database of packet reception o
traces of links having different reception rates using 862 % = =+ I &)
compliant CC2420 radios. The nodes were deployed indoors @ ff------J----- il
along the ceiling of a corridor in an office building. In our S -2
experiments, we have one fixed sender and multiple receivers o
The sender sends 64 packets per second with an interpacket 8
interval of 16 ms for 1 hour, so the length of each packet = — Optimal
reception trace i230400 bits for each link. We treat one £ -3t GEZTQZ“.EE Re
of the links as the reference link and all other links as targe > +Reuaining (Ran)
links; for the latter, each 1-hour trace is split 70/30 irdmget S - Adaptation (Ref)
and test data. q
Using the trace for the reference link, we estimated a refer- 42 10 20 31 41 103 215
ence M&M model as described by Kamtkeal. [2009 us- Number of adaptation vector$

ing a 2—state HMM (so we have one MMB for eachj,= 5 ] ] o

components per MMB and a window &f = 128 bits. The ~ Figure 5: Wireless data: log-likelihood on test sequences,
experimental setup then proceeded as with the MNIST datas @ function of the adaptation set siXe for the retraining
except we initialized the models from the reference (retrai (red) and adaptation (blue) algorithms, the reference inode
ing) or the identity transformation (adaptation), and we as (dashed black) and retraining with all data (solid blacky). E
signed target and test data to states according to theiepackrorbars over random subsets of adaptation points.

reception rate (PRR). We then retrained/adapted each MMB

over target datasets of si2é and reported the log-likelihood

(fig. 5) on the tests traces, all collected from a link difféire  (atjon data such that they can propagate the new information
from the reference. Again, we see that adaptation needs fg gl the MMB parameters. Our choice of transformation and
less data (about 10 times less), although stagnation dees 0garameter-sharing is driven by two facts: the data dimensio
cur for larger adaptation set sizes. Using a total of .arounqi”ty W is large and quite larger than the number of compo-
N = 30 vectors 20 and10 for states 1 and 2, respectively) npentsis; and in a wireless link, we suspect that changes in
ach_leves a log-likelihood very close to that retraining ba t the distribution are often caused by across-the-boardgesan
entire target ollata.. At a rate of 64 packets/s, this means {, the packet reception rate, which push up or down all the
minute recording time. _ _ . prototype entries. Thus, having two parameteys b,,, per

We also embedded the adapted or retrained MMBs in th@ omponent that apply elementwise makes sense, and our ex-
M&M model and generated long traces from it on differ- periments confirm this. However, this is not the only sharing
ent links. Statistics from these (data not shown), such agirateqy, nor do we expect it to perform well in all circum-
run length distributions, again confirm that adaptationdsee gtances. For example, sharing across dimensions ratirer tha
about 10 times less data than retraining. Given the limits ORomponents, adding a new component wWithentirely free
battery life of sensors, this makes a crucial difference. parameters, or sharing parameters in a more complex way,

) . might be suitable to other settings.

5 Discussion It is interesting to see the (re)training EM algorithm and
In a parameter-sharing adaptation approach, the goal is tour adaptation GEM algorithm from the perspective of clus-
learn a few transformation parameters from the scarce adapering, assignments and fitting. If we had a single compgnent



the retraining and adaptation to a dataset would be a tfizial [Digalakiset al., 1995 Vassilios V. Digalakis, Dimitry Rtis-
retraining would sep; to the mean of the data, and adapta- chev, and Leonardo G. Neumeyer. Speaker adaptation us-
tion would fit a sigmoidr (p; a1, b1) that best maps (elemen- ing constrained estimation of Gaussian mixturd&EE
twise) the reference; to the data mean. With several com-  Trans. Speech and Audio Process., 3(5):357—-366, 1995.
ponents {/ > 1), the retraining needs to solve a clustering [Eyeritt and Hand, 1941Brian S. Everitt and D. J. Hani-
problem (which of theV data pointsk,, go to which of the\/ nite Mixture Distributions. Chapman & Hall, 1981.

clusters) and a fitting problem (of each prototype to the mea'fGales, 200D Mark J. F. Gales. Cluster adaptive training of

of its cluster). The MMB EM algorithm solves this (in a soft hidden Markov models.|EEE Trans. Speech and Audio

way, using posterior probabilities of components correspo )

ing to data points), and can have local optima; which one we PTOCess, 8(4):417-428, July 2000.

find depends on the initidlr,,,, p,, }2/_,. With several com- [Gauvain and Lee, 1992Jean-Luc Gauvain and Chin-Hui
ponents, the adaptation needs to solve a clustering problem Lee. Bayesian learning for hidden Markov model with
(as before), an assignment problem (which component of the Gaussian mixture state observation densitgpsech Com-
reference MMB goes to which cluster of the data) and a fitting munication, 11(2-3):205-213, June 1992.

problem (as before). Again, our GEM adaptation algorithm[Gilbert, 1960 E. N. Gilbert. Capacity of a burst-noise chan-
solves this in a soft way, and can have local optima depending nel. Bell Sys. Tech. J., 39(5):1253-1266, September 1960.

the initial{ 7, am, bm }M_,. This al t impl . . .
on the initial{n, @, b }in_1. ThIS also suggests a simple, [Kamtheet al., 2009 Ankur Kamthe, MiguelA. Carreira-

m=
suboptimal algorithm to estimate the parameters, whesethe o -

P 9 b Perphan, and Alberto E. Cerpa. M&M: Multilevel
Markov model for wireless link simulation in sensor net-

three problems are solved sequentially:
1. Clustering: cluster the data indd clusters withk-means. v oks. InProc. of the 7th ACM Conference on Embedded
2. Assignment: assign reference prototypes to nearest- Networked Sensor Systems (SenSys), pages 57—70, 2009.
neighbork-means centroids in a one-to-one COITespoNn{kyhnet al., 2004 Roland Kuhn, Jean-Claude Junqua
dence (e.g. by selecting neighbors greedily). Patrick Nguyen, and Nancy Niedzielski. Rapid speaker
3. Fitting: for each component separately, find the best sig- adaptation in eigenvoice spactEEE Trans. Soeech and
moid that maps the reference prototype to the centroid.  Audio Process., 8(6):695-707, November 2000.

The resulting{a,, by} or {p} will likely be suboptimal,  [Lee and Rose, 1998Li Lee and Richard Rose. A frequency
particularly with sparse adaptation data, but can be usad as  warping approach to speaker normalizatidEEE Trans.

alternative initialization for the EM and GEM algorithms. Speech and Audio Process., 6(1):49-60, January 1998.
. [Leggetter and Woodland, 19P%. J. Leggetter and P. C.
6 Conclusion Woodland. Maximum likelihood linear regression for

We have proposed what, as far as we know, is the first ap- speaker adaptation of continuous density hidden Markov
proach to quickly adapt a reference MMB model to a new models.Computer Speech and Language, 9, 1995.
distribution given a few samples from the latter. We ”On”n'[McLachIan and Krishnan, 2008Geoffrey J. McLachlan

early and separately transform each prototype from the-refe 5.4 Thriyambakam Krishnaithe EM Algorithm and Ex-
ence MMB using a small number of parameters and estimate iengions. John Wiley & Sons, second edition, 2008.

these with a generalized EM algorithm. In our current senso .

network infrastructure, this achieves models with traces ofNocgdal and Wright, 20d6Jorge Nocedal and Stephen J.
about a minute that are about as good as retraining all MMB  Wright. Numerical Optimization. Springer-Verlag, second
parameters from scratch with traces of hours, greatly simpl ~ €dition, 2006.

fying the task of building realistic network simulators. i@l  [Pawlikowskiet al., 2003 Krzysztof Pawlikowski, Hae-
gorithm applies to adapting MMBs in other settings, altHoug  Duck Joshua Jeong, and Jong-Suk Ruth Lee. On
we expect that other ways of sharing parameters may be more credibility of simulation studies of telecommunication
suitable, and future work should address this. networks.|EEE Communications Magazine, 40, 2002.

Matlab code available &it t p: / / eecs. ucner ced. edu. [Qin and Carreira-Peran, 2009 Chao Qin and MigueA.
Carreira-Pergian. Adaptation of a predictive model of
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