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Abstract

The mixture of multivariate Bernoulli distributions
(MMB) is a statistical model for high-dimensional
binary data in widespread use. Recently, the MMB
has been used to model the sequence of packet re-
ceptions and losses of wireless links in sensor net-
works. Given an MMB trained on long data traces
recorded from links of a deployed network, one can
then use samples from the MMB to test different
routing algorithms for as long as desired. How-
ever, learning an accurate model for a new link re-
quires collecting from it long traces over periods of
hours, a costly process in practice (e.g. limited bat-
tery life). We propose an algorithm that can adapt
a preexisting MMB trained with extensive data to a
new link from which very limited data is available.
Our approach constrains the new MMB’s parame-
ters through a nonlinear transformation of the ex-
isting MMB’s parameters. The transformation has
a small number of parameters that are estimated us-
ing a generalized EM algorithm with an inner loop
of BFGS iterations. We demonstrate the efficacy
of the approach using the MNIST dataset of hand-
written digits, and wireless link data from a sen-
sor network. We show we can learn accurate mod-
els from data traces of about 1 minute, about 10
times shorter than needed if training an MMB from
scratch.

1 Introduction
In order to behave optimally, the distributed algorithms run-
ning on a sensor network—for example, to find the route
for a packet or to decide whether to transmit now or later—
require knowledge of the wireless link quality between any
two nodes. In order to test such algorithms before they run
in an actual network, network researchers use simulators that
generate binary sequences (data traces) where 1 and 0 cor-
respond to packet reception or loss, respectively. They then
generate sequences for as long as desired and feed them to
the algorithms as input. Ideally, the distribution of the data
traces should match that of the real link targeted. Tradition-
ally, wireless links have been modeled with hand-crafted ap-
proaches based on the physics of wave propagation; or with

simple statistical models such as the Gilbert-Elliott model
[Gilbert, 1960]. However, the former are able to deal only
with simple geometries and are unsuitable to real deploy-
ments; and the latter may be able to capture simple statis-
tics such as the packet reception rate (PRR, the moving av-
erage of the sequence) or simple bursts, but are unable to
capture the complex correlations seen in real traces (particu-
larly with low-quality links)[Pawlikowskiet al., 2002]. More
recently, more sophisticated machine learning methods us-
ing larger numbers of parameters estimated on recorded data
have shown remarkable improvements. We consider in par-
ticular the Multi-level Markov Model (M&M) recently pro-
posed by Kamtheet al. [2009]. This models the binary se-
quence by considering it as a sequence of windows ofW
consecutive bits. The model consists of (1) a hidden Markov
model (HMM) that accounts for the long-term changes in
the sequence, mostly caused by drastic changes in the PRR
(e.g. caused by interference by an object moving nearby);
and (2) as output distribution of each HMM state, a mix-
ture of multivariate Bernoulli distributions (MMB) that ac-
counts for short-term changes intrinsic to the link (dependent
on its location). Kamtheet al. trained this model on long
data traces (over hours or days) and showed using various
statistics (PRR, run length distribution, Jensen-Shannondi-
vergence) the ability of the M&M model to learn complex
distributions for links of very different characteristics.

However, one drawback of the M&M and similar data-
driven models with many parameters is the need for suffi-
ciently large training sets to achieve reliable estimates.This
means that for each link of a sensor network that we want
to model, the network developer must first record data for
enough time (hours or days). This prevents quick setup of a
new link and is costly in resources (e.g. battery life), particu-
larly for sensors in hard-to-reach locations (such as climate-
sensing networks in Greenland). In these situations, it makes
sense to use an existing model (which we call reference) that
has been trained with extensive data and adapt it to the new
situation (the target distribution) given a far smaller data trace
than would be necessary to train a new model from scratch.
This is the adaptation setting that we pursue in this paper.

In the original M&M model[Kamtheet al., 2009], one first
clusters the training set into separate subsets roughly corre-
sponding to different PRRs, and each cluster corresponding
to one state of the HMM. Then a different MMB is learned



separately for each state. Thus, we focus here on adapting not
the entire M&M model but on adapting a single MMB. We
assume that the data corresponding to this particular MMB
has been selected ahead of time. We believe ours is the first
approach to adapting a mixture of multivariate Bernoullis.

In the next sections, we review related work, define the
MMB and our adaptation strategy, derive a generalized EM
algorithm, and evaluate it with MNIST and wireless data.

Related work In machine learning, work on transfer and
multitask learning has considered the problem of learning
models such as classifiers in the presence of different do-
mains [Thrun and Pratt, 1998]. In our adaptation setting,
we do not know at training time the target distribution we
need to model. Our work is most closely related to adapta-
tion methods in speech processing[Woodland, 2001], where
given a Gaussian-mixture-based HMM trained for a refer-
ence speaker we want to adapt it to a new speaker given as
little new speech as possible. Maximum-a-posteriori meth-
ods apply Bayes’ rule using as prior the trained model[Gau-
vain and Lee, 1992] or a hierarchical prior[Shinoda and Lee,
1997] and converge to the true maximum-likelihood estimate
with infinite data, but are generally not competitive with little
adaptation data because only a few parameters are updated.
Thus, most work is based on tying together groups of param-
eters (means, covariances) and using linear transformations
of the parameters or features[Leggetter and Woodland, 1995;
Digalakiset al., 1995; Lee and Rose, 1998; Qin and Carreira-
Perpĩnán, 2009]. This does not converge to the maximum-
likelihood estimate but updates all parameters and signifi-
cantly improves the model with little data. As we show later,
linear transformations are not suitable with MMBs because
(unlike the means of a Gaussian) the prototypes are con-
strained to be in[0, 1].

Other work considers a space where each point represents
a model, and constrains the target model to be in a manifold
or cluster set spanned by existing trained models[Kuhnet al.,
2000; Gales, 2000]. However, this requires sufficiently many
trained models, which may not be available in practice.

2 Mixture of multivariate Bernoulli distributions
Beyond its use in the M&M model, mixtures of multivari-
ate Bernoulli distributions (MMB) are widely used to model
high-dimensional binary data in terms of a few latent classes,
from bacterial taxonomy to binary images[Everitt and Hand,
1981; Carreira-Perpiñán and Renals, 2000]. Given a data vec-
tor x ∈ {0, 1}W with W binary variables, its density is

p(x) =

M∑

m=1

πmp(x|m) p(x|m) =

W∏

w=1

pxw

mw(1− pmw)
1−xw

where there areM components and the parameters are the
mixing proportionsπm (which are positive and sum to one)
and the prototypespm ∈ [0, 1]W . Thus, variables within a
component are independent, but not across components. With
enough components, an MMB can represent complex high-
dimensional distributions.

Given a training set, an MMB is usually trained with an
EM algorithm. The E step computes the posterior probability

of each component given a data vector. The M step estimates
the parameters of each component: its mixing proportion is
proportional to the total posterior probability of the compo-
nent, and its prototype is the average of the whole data wrt
the posterior probabilities. The EM algorithm needs initial
values for the parameters and can converge to local optima.

In the context of adaptation, we will callretraining the pro-
cess of estimating an MMB using this EM algorithm given the
adaptation data, and initializing the parameters to those of the
reference MMB. Retraining with little data leads to estimates
that overtrain and generalize poorly to future data. For exam-
ple, in applications like those we consider (binary images or
windows), the space dimensionalityW is large (hundreds), so
if little adaptation data is available, some of the dimensions
in the data may consist mostly (or only) of 0s or 1s. The cor-
respodingpmw value will clamp to (close to) 0 or 1 and will
then rarely generate a 1 or a 0, respectively, during sampling,
so the simulated traces will not be representative of the data.

3 Adapting the MMB
We now assume we have an MMB model (thereference
model) that has been trained on an extensive dataset (say,
from a given wireless link in a network), that is, we have
the values of its parameters (mixing proportions and proto-
types). We are given anadaptation dataset, sampled from
an unknowntarget distribution, containing a small number
N of binaryW -dimensional vectors{xn}

N
n=1, and we want

to learn a new MMB model, with parameters{π̃m, p̃m}Mm=1,
for the target distribution. Our algorithm is based on the idea
of tying the MMB parameters together through a transforma-
tion of the reference parameters. The transformation itself has
very few parameters, so they can be learned from the small
adaptation dataset, but their effect is propagated to all the
MMB parameters through the transformation. Specifically,
we obtain each newW -dimensional prototypẽpm as anon-
linear transformation f(pm,θm) of the reference prototype
pm, independently for each component, using a number of
parametersθm much less thanW . The transformation is non-
linear because the prototypes must be in[0, 1]. With a linear
transformation with shared parameters, the total amount of
change inpm is limited, because reference valuespmw close
to either 0 or 1 would immediately reach 0 or 1 (saturate)
and prevent the remaining, less extreme values from adapt-
ing. This is a major difference with existing adaptation work
on Gaussian mixtures where the Gaussian means are uncon-
strained and linear transformations suffice. In this paper,we
apply a sigmoid transformation with parametersam, bm ∈ R

elementwise to each entry inpm:

p̃mw = σ(pmw; am, bm) =
1

1 + e−(ampmw+bm)
, w = 1, . . . ,W.

This allows large changes to allpmw even if some are close to
the boundaries. (In the nongeneric case where allpmw values
are identical within one component, there is an infinite num-
ber of(am, bm) values that can map it to a given output, and
our algorithm will find one of those.) As for the mixing pro-
portions, since there is only one per component, we consider
them as free during adaptation (subject to adding to 1).



Thus, our algorithm needs to maximize the likelihood of
the adaptation data over a total of3M − 1 free parameters
(mixing proportionsπ̃1, . . . , π̃M−1 and sigmoid parameters
a1, b1, . . . , aM , bM ), which with our high-dimensional data
is far less than(W + 1)M − 1 parameters (proportions and
prototypes) for the unconstrained MMB.

Like the EM algorithm for MMBs, our GEM algorithm can
converge to local optima. Since the point of adaptation is that
the reference model should be relatively close to the target
one, the initial values for{π̃m, am, bm} should be such that
the MMB they represent is as close as possible to that of the
reference model. This is achieved by settingπ̃m = πm and
am = 5.47, bm = −2.79; the latter correspond to the sigmoid
that is closest to the identity transformation. We do describe
an alternative initialization strategy in section 5.

A generalized EM algorithm for adaptation Our objec-
tive function is the log-likelihood of the adaptation data given
the constrained MMB model with3M − 1 free parameters:

L
(
{π̃m, am, bm}Mm=1

)
=

∑N

n=1 log
∑M

m=1 π̃mp(xn; am, bm)

where p(xn; am, bm) is a multivariate Bernoulli with pro-
totype p̃m = σ(pm; am, bm). We provide a generalized
expectation-maximization (EM) to maximize it[McLachlan
and Krishnan, 2008]. Unlike in the EM algorithm to train
an MMB, the use of a nonlinear transformation makes the
M step now not solvable in closed form for{am, bm}. In-
stead, we need to solve it iteratively; we have found the BFGS
algorithm (a quasi-Newton algorithm with superlinear con-
vergence; Nocedal and Wright[2006]) effective. Since this
increases but (if we exit BFGS early) need not maximize
the likelihood within the M step, our EM algorithm is gen-
eralized, and the theorems for convergence of GEM apply
[McLachlan and Krishnan, 2008]. The E step is analogous to
that of the EM algorithm for MMBs. In the equations below,
notep̃τmw = σ(pmw; a

τ
m, bτm).

E step This computesrτmn = p(m|xn; π̃
τ
m, aτm, bτm), the

posterior probability of componentm given data point
xn under the current iteration’s (τ ) parameters:

rτmn =
π̃τ
m

∏W

w=1 (p̃
τ
mw)

xnw(1− p̃τmw)
1−xnw

∑M

m′=1 π̃
τ
m′

∏W

w=1(p̃
τ
m′w)

xnw(1− p̃τm′w)
1−xnw

.

M step This results from increasing or maximizingQ, the
expected (wrt therτmn) complete-data log-likelihood,
overπ̃m, am, bm:

Q({π̃m, am, bm}Mm=1; {π̃
τ
m, aτm, bτm}Mm=1) =∑N

n=1

∑M

zn=1 r
τ
zn,n

log (p(zn; π̃zn)p(xn|zn; azn , bzn))

where we call1 ≤ zn ≤ M the (unknown) index of the
mixture component that generated data pointxn. We ob-
tain a closed-form solution for the mixing proportions:

π̃τ+1
m = 1

N

∑N

n=1 r
τ
mn

but the expression for the gradient ofQ wrt {am, bm}

∂Q

∂am
=

∑N

n=1 r
τ
mn

∑W

w=1 pmw(xnw − p̃mw)

∂Q

∂bm
=

∑N

n=1 r
τ
mn

∑W

w=1 (xnw − p̃mw)

when equated to zero cannot solved in closed form for
{aτ+1

m , bτ+1
m }, so we iterate over{am, bm} using BFGS.

Computational complexity Our algorithm consists of an
outer loop of GEM iterations, and an inner loop of BFGS it-
erations for the M step. Our experiments show how to set
the exit tolerance and maximum number of inner-loop iter-
ations. Computing the BFGS search direction isO(M2) (a
matrix-vector product of orderM ), which is negligible wrt
computing the E step and gradient ofQ, both of which cost
O(MNW ). Thus the algorithm runtime isO(NMW ) times
the total number of inner-loop iterations.

4 Experiments

4.1 MNIST handwritten digits

The MNIST dataset, commonly used in machine learning,
contains grayscale images of28 × 28 pixels (W = 784 di-
mensions) of handwritten digits from many writers. We illus-
trate our adaptation algorithm by having a reference model
trained on a large subset of MNIST, and then adapting to a
small subset where the pixel intensities have been inverted
(see fig. 1). This represents a situation where the target dis-
tribution is very different from the reference distribution, but
many of its characteristics (e.g. digit class, slant, thickness)
do not change. These characteristics have been learnt by the
reference model using a large training set, and the goal of
the adaptation is to preserve those but change the intensityto
match the new, inverted one.

We used data from the digits ‘1’, ‘2’ and ‘3’ only. We
randomly split the10 000 digits per class into a training set
(3 000), a target dataset (6 000) and a test dataset (1 000). Al-
though MNIST provides the digit label, none of our experi-
ments use it, so all models are learnt in a purely unsupervised
way. We converted the grayscales from[0, 1] to binary using a
threshold of0.5, and inverted the images from the target and
test sets. Our reference model (fig. 2) hadM = 3 compo-
nents (for a total of2 354 parameters) and was learned on the
training set with the EM algorithm. For adaptation (8 param-
eters) and retraining (2 354 parameters), we used randomly
selected subsets of sizeN from the target set, whereN var-
ied from3 to 18 000 (the whole target set); note that subsets
did not necessarily contain the same number of ‘1’, ‘2’ or ‘3’.
The experiments were repeated over 50 subsets each to obtain
errorbars. As initialization, we used the algorithm described
in section 5 for both EM retraining and GEM adaptation. We
stopped iterating when the relative log-likelihood changewas
less than10−8.

Fig. 2 shows the learned parameters for a particular sub-
set ofN = 100 adaptation vectors. The parameters resulting
from adaptation resemble very much the ones resulting from
retraining with extensive data, which in turn resemble the ref-
erence ones but inverted (also shown by the inverted sigmoids
in fig. 3). The prototypes look like smooth, average shapes
representative of the entire populations of ‘1’, ‘2’ and ‘3’.
Even though we adapt only8 free parameters, all2 354 pa-
rameters (prototypes and proportions) undergo large changes.
However, retraining withN = 100 vectors gives poor results,



Figure 1: MNIST: sample training vectorsxn in the reference (top row) and target (bottom row) datasets.

Reference model Adapted model Retrained model Retrained, all data
π1 = 0.33 π2 = 0.33 π3 = 0.34 π1 = 0.38 π2 = 0.38 π3 = 0.24 π1 = 0.30 π2 = 0.21 π3 = 0.49 π1 = 0.35 π2 = 0.33 π3 = 0.32

Figure 2: MNIST: MMB parameters for the reference model, adaptation (withN = 100 adaptation points), retraining (with
N = 100) and retraining (withN = 18 000).

m = 1, am = −7.1, bm = 3.5 m = 3, am = −8.7, bm = 4.2
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Figure 3: MNIST: estimated sigmoids for two of the com-
ponents. The vertical and horizontal lines indicate pairs
(pmw, p̃mw) (not all W pairs are shown, to avoid clutter).
Note how both essentially invert the input.

with each component learning slant and other traits that are
idiosyncratic to the particular adaptation set used.

Fig. 4(top) shows the log-likelihood on the test set as a
function of N . The adaptation algorithm achieves results
close to retraining with all data (“optimal” line) for very small
N and reliably so (note the tight errorbars). AsN increases,
the adaptation performance stagnates without reaching the
optimal baseline, a necessary consequence of learning very
few free parameters. Retraining needsN > 100 vectors
to equal adaptation and performs poorly and unreliably with
smallN . The classification accuracy (fig. 4, bottom), where
we assigned a test imagex to the cluster with largest posterior
probabilityp(m|x) under the MMB, shows similar results.

We also determined the number of inner-loop iterations
(which correlates well with the runtime) that leads to fastest
runtime. We ran the inner loop until either a relative log-
likelihood change ofǫ or I iterations were achieved, for a
fixed model initialized from the same point (we checked all
repeats converged to the same optimum). Table 1 shows that
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Figure 4: MNIST: results of the retraining (red) and adap-
tation (blue) algorithms, the reference model (dashed black)
and retraining with all data (solid black) on the log-likelihood
(above) and classification accuracy (below) on test sets, asa
function of the adaptation set sizeN . Errorbars over 50 ran-
dom subsets of adaptation points.



FixedI
ǫ I outer inner

10−1 100 267 267
10−2 100 281 284
10−3 100 343 365
10−4 100 157 171
10−5 100 47 62
10−6 100 3 20
10−7 100 3 20
10−8 100 3 20

Fixedǫ
ǫ I outer inner

10−8 1 267 267
10−8 2 27 53
10−8 3 34 96
10−8 4 30 117
10−8 5 26 126
10−8 10 4 23
10−8 25 3 20
10−8 100 3 20

Table 1: Total number of outer and inner loop iterations for
the GEM algorithm as a function of the convergence tolerance
ǫ and max. number of iterationsI allowed in the inner loop.

solving the inner, BFGS iteration accurately is fastest, and we
usedǫ = 10−8 andI = 25 for all our experiments.

4.2 Wireless link data
We collected a comprehensive database of packet reception
traces of links having different reception rates using 802.15.4
compliant CC2420 radios. The nodes were deployed indoors
along the ceiling of a corridor in an office building. In our
experiments, we have one fixed sender and multiple receivers.
The sender sends 64 packets per second with an interpacket
interval of 16 ms for 1 hour, so the length of each packet
reception trace is230 400 bits for each link. We treat one
of the links as the reference link and all other links as target
links; for the latter, each 1-hour trace is split 70/30 into target
and test data.

Using the trace for the reference link, we estimated a refer-
ence M&M model as described by Kamtheet al. [2009] us-
ing a 2–state HMM (so we have one MMB for each),M = 5
components per MMB and a window ofW = 128 bits. The
experimental setup then proceeded as with the MNIST data,
except we initialized the models from the reference (retrain-
ing) or the identity transformation (adaptation), and we as-
signed target and test data to states according to their packet
reception rate (PRR). We then retrained/adapted each MMB
over target datasets of sizeN and reported the log-likelihood
(fig. 5) on the tests traces, all collected from a link different
from the reference. Again, we see that adaptation needs far
less data (about 10 times less), although stagnation does oc-
cur for larger adaptation set sizes. Using a total of around
N = 30 vectors (20 and10 for states 1 and 2, respectively)
achieves a log-likelihood very close to that retraining on the
entire target data. At a rate of 64 packets/s, this means 1
minute recording time.

We also embedded the adapted or retrained MMBs in the
M&M model and generated long traces from it on differ-
ent links. Statistics from these (data not shown), such as
run length distributions, again confirm that adaptation needs
about 10 times less data than retraining. Given the limits on
battery life of sensors, this makes a crucial difference.

5 Discussion
In a parameter-sharing adaptation approach, the goal is to
learn a few transformation parameters from the scarce adap-

MMB for state 1 of the HMM

  8  21  42  63  84 211 844
−6

−5

−4

−3

−2

x 10
4

 

 

Optimal

Reference

Retraining (Ref)

Retraining (Ran)

Adaptation (Ref)

2.5   5 7.5  10  25 100
Percentage of target data

Number of adaptation vectorsN

Lo
g-

lik
el

ih
oo

d
on

te
st

se
t

MMB for state 2 of the HMM
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Figure 5: Wireless data: log-likelihood on test sequences,
as a function of the adaptation set sizeN , for the retraining
(red) and adaptation (blue) algorithms, the reference model
(dashed black) and retraining with all data (solid black). Er-
rorbars over random subsets of adaptation points.

tation data such that they can propagate the new information
to all the MMB parameters. Our choice of transformation and
parameter-sharing is driven by two facts: the data dimension-
ality W is large and quite larger than the number of compo-
nentsM ; and in a wireless link, we suspect that changes in
the distribution are often caused by across-the-board changes
in the packet reception rate, which push up or down all the
prototype entries. Thus, having two parametersam, bm per
component that apply elementwise makes sense, and our ex-
periments confirm this. However, this is not the only sharing
strategy, nor do we expect it to perform well in all circum-
stances. For example, sharing across dimensions rather than
components, adding a new component withW entirely free
parameters, or sharing parameters in a more complex way,
might be suitable to other settings.

It is interesting to see the (re)training EM algorithm and
our adaptation GEM algorithm from the perspective of clus-
tering, assignments and fitting. If we had a single component,



the retraining and adaptation to a dataset would be a trivialfit:
retraining would setp1 to the mean of the data, and adapta-
tion would fit a sigmoidσ(p; a1, b1) that best maps (elemen-
twise) the referencep1 to the data mean. With several com-
ponents (M > 1), the retraining needs to solve a clustering
problem (which of theN data pointsxn go to which of theM
clusters) and a fitting problem (of each prototype to the mean
of its cluster). The MMB EM algorithm solves this (in a soft
way, using posterior probabilities of components correspond-
ing to data points), and can have local optima; which one we
find depends on the initial{πm,pm}Mm=1. With several com-
ponents, the adaptation needs to solve a clustering problem
(as before), an assignment problem (which component of the
reference MMB goes to which cluster of the data) and a fitting
problem (as before). Again, our GEM adaptation algorithm
solves this in a soft way, and can have local optima depending
on the initial{π̃m, am, bm}Mm=1. This also suggests a simple,
suboptimal algorithm to estimate the parameters, where these
three problems are solved sequentially:

1. Clustering: cluster the data intoM clusters withk-means.

2. Assignment: assign reference prototypes to nearest-
neighbork-means centroids in a one-to-one correspon-
dence (e.g. by selecting neighbors greedily).

3. Fitting: for each component separately, find the best sig-
moid that maps the reference prototype to the centroid.

The resulting{am, bm} or {pm} will likely be suboptimal,
particularly with sparse adaptation data, but can be used asan
alternative initialization for the EM and GEM algorithms.

6 Conclusion
We have proposed what, as far as we know, is the first ap-
proach to quickly adapt a reference MMB model to a new
distribution given a few samples from the latter. We nonlin-
early and separately transform each prototype from the refer-
ence MMB using a small number of parameters and estimate
these with a generalized EM algorithm. In our current sensor
network infrastructure, this achieves models with traces of
about a minute that are about as good as retraining all MMB
parameters from scratch with traces of hours, greatly simpli-
fying the task of building realistic network simulators. Our al-
gorithm applies to adapting MMBs in other settings, although
we expect that other ways of sharing parameters may be more
suitable, and future work should address this.

Matlab code available athttp://eecs.ucmerced.edu.
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Perpĩnán and Steve Renals. Practical identifiability of fi-
nite mixtures of multivariate Bernoulli distributions.Neu-
ral Computation, 12(1):141–152, January 2000.

[Digalakiset al., 1995] Vassilios V. Digalakis, Dimitry Rtis-
chev, and Leonardo G. Neumeyer. Speaker adaptation us-
ing constrained estimation of Gaussian mixtures.IEEE
Trans. Speech and Audio Process., 3(5):357–366, 1995.

[Everitt and Hand, 1981] Brian S. Everitt and D. J. Hand.Fi-
nite Mixture Distributions. Chapman & Hall, 1981.

[Gales, 2000] Mark J. F. Gales. Cluster adaptive training of
hidden Markov models.IEEE Trans. Speech and Audio
Process., 8(4):417–428, July 2000.

[Gauvain and Lee, 1992] Jean-Luc Gauvain and Chin-Hui
Lee. Bayesian learning for hidden Markov model with
Gaussian mixture state observation densities.Speech Com-
munication, 11(2–3):205–213, June 1992.

[Gilbert, 1960] E. N. Gilbert. Capacity of a burst-noise chan-
nel. Bell Sys. Tech. J., 39(5):1253–1266, September 1960.

[Kamtheet al., 2009] Ankur Kamthe, MiguelÁ. Carreira-
Perpĩnán, and Alberto E. Cerpa. M&M: Multilevel
Markov model for wireless link simulation in sensor net-
works. InProc. of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 57–70, 2009.

[Kuhn et al., 2000] Roland Kuhn, Jean-Claude Junqua,
Patrick Nguyen, and Nancy Niedzielski. Rapid speaker
adaptation in eigenvoice space.IEEE Trans. Speech and
Audio Process., 8(6):695–707, November 2000.

[Lee and Rose, 1998] Li Lee and Richard Rose. A frequency
warping approach to speaker normalization.IEEE Trans.
Speech and Audio Process., 6(1):49–60, January 1998.

[Leggetter and Woodland, 1995] C. J. Leggetter and P. C.
Woodland. Maximum likelihood linear regression for
speaker adaptation of continuous density hidden Markov
models.Computer Speech and Language, 9, 1995.

[McLachlan and Krishnan, 2008] Geoffrey J. McLachlan
and Thriyambakam Krishnan.The EM Algorithm and Ex-
tensions. John Wiley & Sons, second edition, 2008.

[Nocedal and Wright, 2006] Jorge Nocedal and Stephen J.
Wright. Numerical Optimization. Springer-Verlag, second
edition, 2006.

[Pawlikowskiet al., 2002] Krzysztof Pawlikowski, Hae-
Duck Joshua Jeong, and Jong-Suk Ruth Lee. On
credibility of simulation studies of telecommunication
networks.IEEE Communications Magazine, 40, 2002.
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